许愿时光【NPH】_数学建模 首页

字体:      护眼 关灯

上一页 目录 下一页

   数学建模 (第8/17页)

警后,在叁分钟内能从接警位置赶到事发现场的最大距离是r,其中。

    如图1所示,我们设警车初始停靠位置在A点,A点是道路1,2,3,4的道路交叉口。我们仅以警车在道路1巡逻为例来进行分析,警车以的速度在道路1上A到点之间巡逻,与初始停靠点A的距离为。由于案件有可能在道路上任一点发生,当警车巡逻到A点时,假设案发现场在道路2,3,4上发生时,警车以40km/h的速度向事发现场行驶,警车能在叁分钟内从点赶到现场的最大距离为。如果警车在道路1上继续向前行驶,那么该警车能在叁分钟内赶到现场的距离继续缩小,当警车从初始点向A点行驶但没有到达点时,此时该警车的最大管辖范围比警车到达点时的最大管辖范围大。为了使警车的管辖范围尽量大,警车的巡逻范围越小越好,当时,即警车在初始停靠点静止不动时,警车的管辖范围到达最大值。

    图1所分析的是特殊的情况,道路1,2,3,4对称分布,现在我们来对一般的情况进行分析,如图2所示。

    图2.1                                                              图2.2

    图2      一辆警车最大管辖范围分析示意图

    图2.1所示的情况是道路分布不对称,与图1相比,图2.1所示的道路方向和角度都发生了改变,图2.3中的情形更为复杂。参照对图1的分析方法,我们分析这两种情形下,警车巡逻时能在叁分钟内赶到现场的最大距离的规律,我们只分析图2.2的情况,道路1,2,3,4,5相交于点C,同时道路1与道路6也有
加入书签 我的书架

上一页 目录 下一页